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Methodologies, modeling approaches, and the interactions between various system elements involved in inspection-allocation and
sensor-distribution problems, that influence operational quality decisions, are discussed. The surveyed papers fall into two broad
categories: inspection-oriented quality-assurance strategies and diagnosis-oriented sensor-distribution strategies. Within each subarea,
individual papers are further classified according to the system characteristics of the physical processes being investigated and the
modeling characteristics of the approaches being used. As evident from nearly 100 journal articles published in the past four decades,
these two problems have received considerable attention from researchers in quality engineering, management science, operations
research as well as robotic vision arenas. We find that the inspection-allocation problem has been studied rather comprehensively
whereas the relatively new sensor-distribution problem has plenty of opportunities for researchers. Discussions are also presented to
summarize our observations based on the classifications along with some thoughts on future research.

1. Introduction

Producing high-quality products is a crucial factor in an
enterprise maintaining its global competitiveness. Opera-
tions managers tend to view quality as being the fraction
of products that are made right the first time in each of
the various stages that constitute a manufacturing process.
More quantitatively, quality is defined to be inversely pro-
portional to variability, and quality improvement is then
equivalent to variation reduction (Montgomery, 2003).

Since almost all manufacturing processes are technolog-
ically incapable of delivering perfect quality, establishing
an effective quality-assurance program by planning and
managing resources dedicated to the inspection and testing
of critical product attributes is important. Human inspec-
tors, automated sensing devices (e.g., an image analyzer in
a machine vision system), or a combination of both are of-
ten used for quality-assurance purposes. The inspection or
measurement-taking may simply be process checks for de-
fects resulting from an individual process that has just been
completed, or may be a part of a more comprehensive di-
agnosis that traces an underlying anomaly that has existed
for a number of previous processes.

Introducing inspection stations or deploying sensing de-
vices in a production process, although constituting an ad-
ditional cost, is expected to be a profitable course of action
since at some point the associated costs will be recovered
from the benefits realized via the detection of defective items
and isolation of defect-causing variation sources. If one
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only inspects, reworks, or scraps a finished product, the
inspection cost is low. However, scrapping a finished prod-
uct is usually expensive; its influence on the final product
quality is direct but its contribution to the variation-source
diagnosis is often limited. If, however, one adopts a strategy
of inspecting, reworking, or scrapping upstream intermedi-
ate products then the inspection costs could increase con-
siderably but the scrapping of an unfinished product may
be relatively inexpensive. Also, whereas its influence on the
overall final product quality is indirect, its ability to facil-
itate variation-source diagnosis is often good. Any sound
inspection strategy will have to consider the needs of mul-
tiple stakeholders and make reasonable trade-offs between
their objectives.

Therefore, when and where in a production process an
inspection should be performed or sensing devices be dis-
tributed is an important and challenging decision in qual-
ity control. The various cost and constraint factors as well
as operational alternatives interact in an intricate fashion
and make the solution far from trivial. Research efforts
have been made to address this objective over the past four
decades and they are still going on today. The intention of
this paper is to survey the relevant literature and to present
a summary of the research in this area.

We find that the relevant research efforts can be
generally classified into two broad categories: (i)
inspection-oriented quality-assurance strategies; and (ii)
diagnosis-oriented sensor-distribution strategies. An
inspection-oriented quality-assurance strategy attempts to
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allocate an economically appropriate level of inspection
activity by striking a balance among the various cost com-
ponents associated with inspection, repair and replacement
due to quality failure, and/or the warranty penalty in the
case where a nonconforming product has been shipped
to customers. In other words, an inspection-oriented
strategy focuses on an optimization that minimizes the
total manufacturing costs associated with quality appraisal
and failure.

Although an inspection-oriented strategy potentially im-
proves the quality of products eventually going to cus-
tomers, it does nothing to alter the overall product quality,
since nothing has been done to improve the underlying pro-
cess. Ideally to ensure satisfactory product quality, the role
of measurement-taking should be to diagnose the underly-
ing sources that caused the defect and provide immediate
feedback to workers and suppliers so that they can make
adjustments to the process as soon as any defects occur.
In such an endeavor, people usually assume that a set of
underlying yet unknown variables are responsible for the
quality defects. These underlying variables are usually not
directly observable, and hence, inferences about their status
have to be made based on sensor data in order to determine
which variable(s) are causing the quality problem. Instead
of simply minimizing the overall cost, a diagnosis-oriented
strategy imposes either diagnosability or estimation accu-
racy requirements as a constraint, while finding the optimal
way to deploy sensors. The diagnosis-oriented strategy is
also known as the sensor-distribution strategy.

The difference between the two approaches is caused by
differences in their respective assumptions about the behav-
ior patterns of manufacturing costs. An inspection-oriented
strategy emphasizes a cost-effective production and toler-
ates a nonzero level of defective production. A diagnosis-
oriented strategy focuses on the creation of a near-zero level
of defective production. It is interesting to note that the two
types of research have been conducted rather independently
without much overlap between them.

A few surveys have been previously performed includ-
ing those of Dorris and Foote (1978), Menipaz (1978) and
Raz (1986) all of whom covered research topics related
to the inspection-oriented quality-assurance strategy. Re-
search into diagnosis-oriented strategies is relatively recent
and to the best of our knowledge no survey on this area has
been previously reported.

It has been almost two decades since the survey of Raz
(1986). In the intervening period, sensor technology has
significantly advanced and its application to quality inspec-
tion has greatly expanded. Considerable effort has been
expended on the investigation of new research issues, the
improvement of existing models or methods, and the explo-
ration of untested application domains. The present survey
will cover those papers published since Raz (1986) on the
topics of inspection and sensor-distribution strategies, and
it will also provide more details regarding the system and
model characteristics.
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In this survey, our focus is confined to research with direct
applications to discrete-part manufacturing processes. Thus,
studies on sensor placement methods in continuous-flow
processes or dynamic systems (Kubrusly and Malebranche,
1985) as well as the application of sensor networks to
surveillance and target localization (Chakravarty et al.,
2002) are not included in this survey, although they bear
certain similarities to the work surveyed here, particularly
to diagnosis-oriented strategies.

This survey primarily focuses on journal articles since
refereed journals are arguably the major outlet for orig-
inal technical publications and thus they are expected to
reasonably reflect the trends in technology developments.
For this reason, we have studied articles in those journals
in which the surveyed topic was likely to be published, in-
cluding Management Science, International Journal of Pro-
duction Research, European Journal of Operations Research,
Operations Research, Journal of Quality Technology, Tech-
nometrics, Journal of the American Statistical Association,
ASME Transactions, IEEE Transactions, IIE Transactions,
Transactions of NAMRI/SME, Journal of Manufacturing
Systems, International Journal of Flexible Manufacturing
Systems, Annals of the CIRP, and Computers & Industrial
Engineering among others. We believe that the survey is
reasonably comprehensive.

We hope that this survey can serve two sets of readers.
The first set is comprised of readers who are familiar with
the inspection strategy or sensor-distribution research and
are looking for some simplifying insights, unifying princi-
ples, and/or the trends in the research activity. The second
set is comprised of readers who are new to this research area
and are looking for an overview of the field before begining
to work in this area.

Following this Introduction, the paper is organized
as follows. Section 2 will cover publications related to
inspection-oriented quality-assurance strategies. Section 3
will cover publications related to diagnosis-oriented sensor-
distribution strategies. A general discussion and some per-
spectives on future research directions are presented in
Section 4.

2. Inspection-oriented quality-assurance strategies

2.1. Problem background

The problems associated with formulating an inspection
strategy have been explained in numerous individual re-
search papers as well as in the survey paper by Raz (1986).
In order to make this survey a self-contained entity and
also to provide a basis for later discussions, we will briefly
go through the decision-making process involved in the in-
spection of a finished product or a semi-finished product.
As illustrated in Fig. 1, the question of whether or not to
inspect a final or semi-finished product can be asked after
every manufacturing operation. If the answer is yes, then
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Fig. 1. The inspection allocation problem in manufacturing quality control.

one will need to decide on an inspection threshold or a
specification region for conforming items. In cases where
the inspection is performed on a batch of items instead of a
single item, one also needs to determine if all or a fraction of
the items should be inspected. After inspection, the item(s)
may be deemed as being either conforming, or nonconform-
ing, or indeterminate. Conforming items will then go on to
the next operation. There are several possible outcomes for
nonconforming items: (i) they may be replaced with a con-
forming item which is then sent for the next processing op-
eration; (i) they may be sent back for rework/repair; or (iii)
they may be simply scrapped. Indeterminate cases are usu-
ally due to poor measurement statistics and this problem is
simply alleviated by performing repeated inspections.

It should be noted that not all the questions raised above
are answered in every case studied in the literature. There
are cases in which the locations where an inspection can be
made are fixed (e.g., at the end of a production line) before
the production process is built. These inspection strategies
will therefore answer questions such as the fraction of items
to be inspected, the number of repetitions, and how to deal
with a nonconforming item. We refer to this type of work
as a parametric strategy, whereas research involving the de-
termination of where to allocate inspection capability is
referred to as an allocation strategy.

It is also worth noting that the literature on inspection
strategies does not differentiate between inspections con-
ducted by automated devices, human inspectors, or a mix
of both (e.g., human inspection following an automatic in-
spection). This is because the actual inspection actions are
usually modeled using a set of parameters that are indepen-
dent of the actual inspection methods (such as type-I and
type-II errors and the number of repetitions).

Finally, we would like to point out that the following
assumptions are commonly made in the work surveyed
here:

1. both the product and the process are discrete;
2. product quality is dichotomous;
3. customers perfectly determine the product quality.

In the subsequent sections, we present a classification of
publications using various criteria. In Section 2.2, we first
discuss the characterization of a physical manufacturing
system, inspection capability, and the behavior pattern of
quality defects. In Section 2.3, we discuss the optimization
modeling for the inspection strategy and the associated so-
lution methods. In Section 2.4, we look into the publication
trend over the past decades.

2.2. System characteristics

Based on the systems studied in the existing literature, the
following six major aspects appear to be used to character-
ize a manufacturing process: (i) production configuration;
(i1) item flow; (iii) inspection type; (iv) inspection capability;
(v) defect rate; and (vi) defect reparability.

2.2.1. Production configuration

There are three major process configurations based on the
flow of conforming items: (i) serial/sequential systems;
(ii) assembly/convergent systems; and (iii) nonserial sys-
tems (please see Fig. 2). In a serial production system, the
input material passes through successive processing work-
stations sequentially, whereas in a nonserial system the
input material takes one of several paths through a produc-
tion system, i.e., certain stations may be involved in join-
ing the outputs of multiple previous stations. One special
case of the serial systems is a single-station/stage manufac-
turing process. One special nonserial system is the assem-
bly/convergent system (Garcia-Diaz et al., 1984; Gunter
and Swanson, 1985; Zheng, 2000), shown in Fig. 2(b), where
each workstation has at most one successor but many prede-
cessor workstations (Fig. 2(b), however, shows only the case
with two predecessor workstations). This special nonserial
system has received significant attention perhaps because
it is a simple nonserial form that is relatively easy to solve
mathematically. A system that is neither serial nor assem-
bly falls into the general category of nonserial systems, of
which Fig. 2(c) is just one simple example.
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Fig. 2. Process configurations: (a) a serial/sequential system;
(b) an assembly/convergent system; and (c) a nonserial system.

2.2.2. Item flow

A production line can manufacture either a single type of
product or it can be used for multiple types of products from
the same product family. During production, the items can
flow through an inspection station either as a single item
or as part of a batch (or a lot). There are a total of four
possibilities: (i) the same product in a single item; (ii) the
same product in a batch; (iii) mixed products in a single
item; and (iv) mixed products in a batch.

2.2.3. Inspection type

If an inspection is performed, it may choose one of four
actions: (i) a simple inspection is to inspect a single item
once; (ii) a fractional inspection is to inspect a fixed frac-
tion of items in a batch, where zero and one (full batch) are
the two extreme cases; (iii) a repeated inspection is to in-
spect the same item(s) more than once; and (iv) a dynamic
inspection is to inspect items in a batch sequentially and a
decision of whether to reject or accept the batch is made dy-
namically instead of at a fixed fraction. One may confuse a
repeated inspection with a dynamic inspection because both
will have to take at least another inspection before reaching
a decision. The difference is that for the next inspection,
the repeated inspection is to inspect the same item or the
same batch of items, whereas the dynamic inspection is to
inspect a different item (in dynamic inspection, each indi-
vidual item is usually inspected only once).

2.2.4. Inspection capability

Two types of errors are associated with an inspection:
(1) the wrong rejection of a conforming unit which is known
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as type-I error; and (ii) the erroneous acceptance of a non-
conforming unit which is known as type-II error. Not all
the authors have considered both types of errors. Some have
only considered one of the two types and some other au-
thors have simply assumed a perfect inspection (i.e., error
free).

2.2.5. Defect rate

Defect rate is the proportion of defective items among all
items manufactured by a process at a stage. Together with
the next aspect, they provide a characterization of the be-
havior pattern of quality defects. Some authors have as-
sumed a known constant defect rate for all operations,
whereas others have either assumed a possible range of
defect rates (usually from zero to an upper bound) and
assigned an occurrence probability for each defect rate or
explicitly treated the defect rate as a random variable fol-
lowing certain distribution: both of which are labeled as a
random rate approach. Researchers have also considered a
single defect type, assigned with one variable for the defect
rate, as well as multiple defect types, assigned with a vector
of defect rates associated with each type of defect. Thus, we
have four potential combinations: (i) single type constant;
(ii) single type random; (iii) multiple type constant; and
(iv) multiple type random.

2.2.6. Defect reparability

Once a defective item is detected during inspection, certain
actions will be taken to repair, replace, or simply scrap it.
What action follows the defect detection will depend not
only on the cost associated with that subsequent action
but also on knowledge of whether the defect is reparable
since certain types of defects cannot be repaired. Hence,
researchers have assigned a reparability level for defects. A
deterministic assignment of reparability means that for a
given type of defect whether or not it is reparable is prede-
termined. However, this may involve three different situa-
tions in which all, none, or some of the defects are reparable.
Some authors have adopted a probabilistic approach which
assumes that a defect is reparable with a given probability.
Namely, all repairs may not be perfect and all the repaired
items may be subject to a probability of incurring a defect
on subsequent processing as they did in the original pro-
cessing. When the action of replacing the defective item is
taken, it is equivalent to either the case in which all the
defects are reparable if the replaced item is assumed defect
free or the case in which the defects are reparable with a
probability if the replaced item is assumed to be subject to
a defect with a probability.

As such, we classify the existing literature into differ-
ent categories associated with each of the aspects. Table
1 presents a summary of the classifications, where each
publication is represented by only the first author’s name
followed by a two-digit publication year in order to save
space. To know what type of manufacturing and inspec-
tion system a publication considered, one needs to pool
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Table 1. Classification of the literature according to system characterization

System
characterization

Classification

Publications

1. Production
configuration

2. Item flow

3. Inspection type

4. Inspection
capability

5. Defective type in
the system and
defect rate at the
stage

Serial/sequential

Assembly/convergent

Non-serial

Same type in a single
item

Same type in a batch

Mix type in a single
item

Mix type in a batch

Simple

Fraction

Repeated
Dynamic

Error free/perfect

Type-I error
Type-11 error
Both error types

Single type constant

Beightler (’64), Lindsay ("64), White (°65), Pruzan (’67), Brown (’68), White (’69),
Ercan (*72), Garey (°72), Woo (°72), Hurst (°73), Dietrich ("74), Eppen (*74),
Ercan (*74), Trippi ("74), Enrick (°75), Trippi (75), Ballou (°82), Hsu (°84),

Peters (’84), Ballou (°85), Chakravarty (’87), Lee (’87), Peters ("87), Yum (’87)
Tayi (’88), Barad (°90), Foster (°90), Kang (°90), Raz (°91), Tang (°91),
Villalobos (°91), Villalobos (’93), Jewkes (’95), Rebello (°95), Shin (°95),
Deliman (°96), Gurnani ('96), Viswandham (’96), Chevalier (97), Chen (°98),
Lee (°98), Yao (°99a), Yao ("99b), Veatch (°00), Shiau (’02), Shiau (’03a),
Shiau (’03b), Kakade ('04), Valenzuela ("04)

Garcia-Diaz (’84), Gunter (°85), Viswandham (’96), Zheng (’00)

Britney (°72), Yum (’81), Narahari (’96), Rabinowitz (’97), Chen (°99), Emmons (’02)

Britney (°72), Garey (°72), Garcia-Diaz (’84), Gunter (’85), Lee (’87), Foster (°90),
Raz (°91), Tang (’91), Villalobos (°91), Villalobos (°93), Jewkes (’95), Rebello (°95),
Shin (°95), Deliman (°96), Narahari (°96), Chevalier ("97), Rabinowitz (°97),
Veatch (°00), Kakade (’04), Valenzuela (’04)

Beightler (*64), Lindsay (°64), White (’65), Pruzan (°67), Brown (°68), White (’69),
Ercan (*72), Woo (°72), Hurst (°73), Dietrich (’74), Eppen (°74), Ercan (*74),
Trippi (°74), Enrick (°75), Trippi (75), Yum (’81), Ballou (’82), Hsu (’84),
Peters (°’84), Ballou (’85), Peters ('87), Yum (’87), Tayi (’88), Barad (°90),
Kang (°90), Gurnani (’96), Viswandham (’96), Chen (°98), Yao (’99a), Yao ("99b),
Veatch (°00), Zheng (’00), Shiau (°02), Shiau (’03a), Shiau ("03b)

Chen (°99), Emmons (’02)

Chakravarty (’87), Lee ("98)

Britney (°72), Garey (°72), Gunter (’85), Lee (°87), Foster (’90), Tang (*91),
Villalobos (*91), Villalobos (’93), Jewkes (’95), Rebello (°95), Shin (°95),
Deliman (°96), Narahari (’96), Chevalier (’97), Rabinowitz (’97), Veatch (’00),
Kakade (°04), Valenzuela (°04)

Beightler (°64), Lindsay (’64), White (°65), Pruzan (’67), Brown (’68), White (’69),
Ercan (*72), Hurst ("73), Eppen (*74), Ercan (*74), Trippi ("74), Enrick (’75),
Trippi (°75), Ballou (°82), Hsu (’84), Peters (’84), Ballou (’85), Chakravarty (°87),
Peters ("87), Yum (’87), Tayi (’88), Barad (°90), Gurnani (’96), Lee (°98),

Veatch (°00), Shiau (’02), Shiau ("03a), Shiau ("03b)

Yum (’81), Garcia-Diaz (’84), Kang (’90), Raz (’91), Deliman (°96),
Viswandham (’96)

Woo (°72), Dietrich (74), Rabinowitz ("97), Chen (’98), Yao (’99a), Yao ("99b),
Zheng (°00)

Beightler (°64), Lindsay (’64), White (°65), Pruzan (’67), Brown (’68), White (’69),
Britney (°72), Ercan (°72), Garey (’72), Woo (*72), Dietrich (*74), Ercan (°74),
Trippi (°74), Trippi ("75), Hsu (’84), Peters (’84), Gunter (’85), Chakravarty (’87),
Tayi (’88), Tang (’91), Jewkes (°95), Gurnani ('96), Narahari (°96),

Rabinowitz (’97), Chen (°98), Chen (°99), Yao (99a), Yao (’99b), Zheng (°00),
Emmons (°02), Kakade (°04), Valenzuela (’04)

Lee (°87), Peters (°87)

Garcia-Diaz (’84), Rebello (°95), Shin (’95), Deliman (°96), Veatch (°00)

Hurst (73), Eppen (*74), Enrick (°75), Yum (’81), Ballou (°82), Ballou (’85),

Yum (’87), Barad (’90), Foster (°90), Kang (’90), Raz (°91), Villalobos (°91),
Villalobos (°93), Viswandham (°96), Chevalier ("97), Lee (°98), Shiau (’02),
Shiau (’03a), Shiau (’03b)

Lindsay (’64), White (°65), Brown (°68), Ercan (°72), Garey (’72), Hurst (°73),
Eppen (°74), Ercan (°74), Enrick (°75), Yum (’81), Ballou (’82), Garcia-Diaz (’84),
Hsu (’84), Peters (’84), Ballou (°85), Gunter (°85), Yum (’87), Tayi (’88),

Foster (°90), Kang (°90), Raz (’91), Tang (’91), Villalobos (°91), Villalobos (°93),
Jewkes (’95), Shin (°95), Deliman (’96), Gurnani (’96), Narahari (’96),
Viswandham (’96), Rabinowitz (’97), Emmons (°02)

( Continued on next page)
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Table 1. Classification of the literature according to system characterization ( Continued)

System
characterization Classification Publications
Single type random Beightler (*64), Dietrich (*74), Chen (°98), Yao (’99a), Veatch (’00), Shiau (°02),
Shiau (’03a), Shiau ("03b)
Multiple type Pruzan (°67), White (’69), Britney (°72), Woo (°72), Trippi ("74), Trippi (75),
constant Chakravarty (°’87), Lee (’87), Peters (’87), Barad (°90), Rebello (’95), Lee (°98),
Chen (°99), Kakade (°04), Valenzuela (’04)
Multiple type Chevalier (°97), Yao (’99b), Zheng (°00)
random
6. Defect All (deterministic) Beightler (°64), White (°65), Brown (°68), Ercan (°72), Ercan (°74), Trippi (’75),
reparability Yum (’81), Garcia-Diaz (’84), Hsu (’84), Lee (’87), Tayi (’88), Jewkes (°95),

Shin (°95), Gurnani (°96), Chevalier ('97), Chen (’98), Yao (°99a), Yao ("99b),
Veatch (°00), Zheng (°00)

Some (deterministic)

White (°69), Britney (*72), Trippi (*74), Enrick (°75), Peters (’84), Yum (’87),

Kang (°90), Rebello (°95), Lee (°98), Chen (°99), Shiau (’02), Shiau ("03a),
Shiau (°03b), Kakade (°04), Valenzuela (°04)

None (deterministic)

Lindsay (’64), Pruzan (°67), Garey (°72), Woo (*72), Hurst (°73), Dietrich (*74),

Eppen (°74), Ballou (°82), Ballou (’85), Gunter (’85), Peters (’87), Foster (°90),
Tang (°91), Villalobos (°91), Villalobos (°93), Viswandham (’96), Rabinowitz (’97),

Emmons (°02)
Probabilistic

Chakravarty (’87), Raz (°91), Narahari (°96), Deliman (’96), Barad (’90), Veatch (’00)

the information under different categories. For example,
Lindsay and Bishop (1964) considered a serial system with
the same type of product inspected in a batch. The inspec-
tion is assumed to be error free and a fixed fraction is used
without repetition. In their paper, a single defect type is
assumed with a constant defect rate across the production
stage and defective units are scrapped. Some of the publi-
cations appear in multiple categories because they consider
multiple scenarios in a production system. For example,
Veatch (2000) considers both a single item flow and a batch
flow with corresponding inspection methods. Also, the pa-
per considered the perfect repair case for product defects as
well as the probabilistic imperfect repair case.

2.3. Modeling characteristics

An inspection-oriented quality-assurance strategy is gener-
ally solved through an optimization formulation. The ob-
jective is to minimize the costs that result due to the in-
spection, defects, warranty, and so on. In this section, we
will first discuss what types of cost components have been
considered. Then, we will discuss the three fundamental
pieces of an optimization method: (i) the objective function;
(i1) the constraints; and (iii) the solution approach.

2.3.1. Cost components

Naturally, the manufacturing cost of producing a product
is under consideration. If a product is manufactured with
a satisfactory quality, then all manufacturing costs will be
recovered and the manufacturer will be rewarded with a
net profit. For that reason, most of the researchers chose to

focus on specific cost components related to quality failures
(both internal and external failures) and inspection.

An internal failure cost is incurred when defects are de-
tected and handled prior to shipment to the customers.
It is in fact the cost associated with repairing, replacing,
or scrapping a defective item. Some papers employed a
net profit model and treated a defective item as being of
zero value without explicitly mentioning that the item is
scrapped; in our classification, we treat this the same as the
scrapping cost.

External failure costs result from the repair or replace-
ment of defective products after delivery to the customer.
There may also be a certain penalty or fine, as well as ex-
penditure for a recall and for restoring the reputation of
the product. The external failure cost is not considered in
every publication. Sometimes the outgoing product quality
is treated as a constraint (e.g., as in Lindsay and Bishop
(1964)) or it is simply assumed that a perfect inspection
is performed on every single outgoing product (e.g., as in
Tang (1991)). When the external failure cost is indeed con-
sidered, some authors assumed that the external cost may
depend on the defect type, whereas others assumed no de-
pendence between the external failure cost and the defect
type.

The inspection cost includes a fixed amount of capital
invested in inspection equipment, and a variable cost that
depends on how frequently one actually performs the action
of inspection. A vast majority of the researchers used a
linear function for the variable inspection cost, i.e., the total
variable inspection cost is the number of units inspected
multiplied by the inspection cost per unit. A few papers
used a quasi-concave function (e.g., as in Britney (1972)) or
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a general nonlinear function (e.g., as in Ballou and Pazer
(1985)) for the inspection variable cost.

In addition to the above-mentioned cost components,
two other cost components were also considered: one is the
process setup and inventory holding cost, and the other is
the cost for searching, and eventually, eliminating the causes
of defects.

2.3.2. Objective function
In the optimization of the inspection strategy, the most com-
mon treatment is to use the total expected cost as the ob-
jective function. The expected unit cost, instead of the total
cost, is another popular choice as the objective function.
However, there are differences in how to count the number
of units.

One version is to count all units entering into a produc-
tion process, i.e.,

()

oo . total cost
objective function = E ,

input units
where E(-) is an expectation operator. Given that the num-
ber of input units is usually a fixed number, we will put the
objective function using the unit cost in the same category
as those that use the total cost.

The second version is to count the units leaving a pro-
duction process, i.¢.,

2

L . total cost
objective function = E .

output units

Equation (2) represents the cost per unit product that is
on the market, contrary to the cost per unit product that
is processed. If there is no scrapping during production,
Equation (2) will be equivalent to Equation (1).

Some authors (e.g. Ballou and Pazer (1982)) have argued
that only conforming outgoing units can generate revenue.
Thus, they suggested only counting the conforming outgo-
ing units, i.e.,

total cost

objective function = E - -
conforming output units

loo

However, not all the papers try to minimize the cost.
There exist a few papers that choose to maximize the
throughput or production capacity. That usually happens
when an inspection scheduling problem, in addition to the
allocation problem, is being considered.

2.3.3. Constraints

The constraints used in the optimization of an inspection
strategy arise naturally from the characteristics of the man-
ufacturing system such as the type of production config-
uration, the type of inspection, and the type of defect.
However, authors have also imposed additional constraints
when solving for an optimal inspection policy. These con-
straints include: (i) the Average Outgoing Quality Limit
(AOQL) (please refer to Ercan et al. (1974) for the def-
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inition of AOQL); (ii) a time limit within which the in-
spection task must finish; (iii) a limit on the number of
inspection stations; (iv) a constraint on how many times
a measurement can be repeated; (v) a budget limit on
manufacturing and inspection actions; and (vi) a lower-
bound requirement on throughput or production capac-
ity. Please note that in the above constraints, the limit on
the number of inspection stations (constraint (iii)) is ac-
tually a special form of the budget constraint (constraint
(v)); and the constraint on inspection time (constraint
(i1)) is related to the throughput constraint (constraint

(vi)).

2.3.4. Optimization solution approaches

Almost all of the papers eventually derive a nonlinear func-
tion for their total cost functions in which some of the deci-
sion variables (such as whether or not to inspect, the serial
number of a station, etc.) can only have integer values. For
this reason, almost every problem is a NonLinear Program-
ming (NLP) problem, and many of them are also Integer
Programming (IP) problems.

A wide variety of optimization methods have been used
to solve the resulting optimization problem. We try to clas-
sify them into several categories. However, we realize that
our categories in Table 2 are not mutually exclusive in the
general definition of the listed methods; for instance, we
have NLP and IP as two separate categories. We place
gradient-based methods for continuous optimization in
the NLP category, including those solved through classi-
cal optimization algorithms, iterative gradient searches, and
experiment-based response surface methodologies (Myers
and Montgomery, 1995). On the other hand, we include
discrete optimization approaches in the IP category, such
as those using the branch-and-bound technique (Raz and
Kaspi, 1991).

Probably because of the multistage structure of a manu-
facturing system, it comes as no surprise that the most pop-
ular method used in the literature to solve for an optimal
inspection strategy is Dynamic Programming (DP). Indeed,
this solution technique is used by 23 papers, accounting for
40% of the 58 papers surveyed. The NLP comes as the sec-
ond most popular method, used by 13 papers, or 23% of
the total.

For an actual manufacturing system, the computations
required by DP, IP, or NLP will escalate considerably as
the number of stations/stages increases. Their capability in
terms of solving a large-scale problem is limited. That is why
many kinds of heuristic methods, including random search
methods such as Simulated Annealing (SA) and Genetic Al-
gorithms (GAs), are often used to reach a better solution,
even though it may not be the optimal one. In fact, heuris-
tic methods are used in 11 papers, making it the third most
popular method following DP and NLP. Other optimiza-
tion methods include those using discrete-event simulations
and expert systems.
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Table 2. Classification of the literature according to modeling characterization

Modeling Classification Publications
1. Cost Internal failure cost
components
Rework/repair White (°69), Britney (*72), Ercan (°72), Ercan (°74), Trippi ("74), Enrick (’75),
Yum (’81), Garcia-Diaz (’84), Peters (’84), Chakravarty (’87), Yum (’87), Tayi (’88),
Barad (°90), Kang (’90), Raz (’91), Jewkes (°95), Rebello (°95), Shin (°95),
Deliman (°96), Gurnani (’96), Narahari ("96), Viswandham (°96), Chevalier (°97),
Chen (°98), Lee ('98), Yao (’99a), Yao (’99b), Zheng (’00), Shiau (’02), Shiau (’03a),
Shiau (’03b), Kakade (’04)
Replace White (°65), White (°69), Ercan (*74), Trippi ("75), Yum (’81), Yum (’87), Barad (°90),
Narahari (’96), Shiau (’02), Shiau (’03a), Shiau (’03b)
Scrap Lindsay (’64), Brown (’68), White (°69), Ercan (°72), Woo (*72), Hurst (’73),

External failure cost
Defect type
dependent
Defect type
independent

Inspection cost
Fixed cost

Linear variable
cost

Nonlinear variable
cost
Manufacturing cost

Setup and inventory
holding cost

Root-cause searching
and elimination

cost
2. Objective E (total cost) or
function E (cost/input
units)

Eppen (°74), Ercan (°74), Trippi ('74), Enrick (*75), Ballou (’82), Hsu (’84),
Peters (’84), Gunter (°85), Chakravarty (’87), Peters (’87), Yum (°87), Tayi (’88),
Barad (°90), Foster (°90), Kang (°90), Raz (°91), Tang (’91), Villalobos (°91),
Villalobos (°93), Rebello (°95), Deliman (°96), Viswandham (°96), Chen (°99),
Veatch (°00). Shiau (°02), Shiau ("03a), Shiau ("03b)

Trippi (°74), Trippi (°75), Peters ('84), Chakravarty (’87), Rebello (°95), Lee (°98),
Yao (’99b), Veatch (°00), Zheng (°00), Kakade (°04)

Beightler (’64), White (°65), Pruzan ('67), Brown (°68), White (’69), Britney (°72),
Ercan (*72), Woo (°72), Dietrich (°74), Eppen (*74), Ercan (’74), Enrick (’75),
Yum (’81), Ballou (’82), Garcia-Diaz (’84), Hsu (’84), Ballou (’85), Gunter (’85),
Yum (’87), Tayi (’88), Barad (’90), Foster (°90), Kang (°90), Raz (’91), Villalobos (°91),
Villalobos (’93), Jewkes (’95), Deliman (’96), Viswandham (°96), Chevalier (°97),
Chen (’98), Yao (’99a), Shiau (’02), Shiau (’03a), Shiau (’03b), Valenzuela ('04)

Pruzan (°67), White (°69), Trippi ("74), Trippi ('75), Peters (°84), Gunter (’85),
Chakravarty (°87), Lee (’87), Peters (’87), Kang (°90), Tang ('91), Chen (’99)

Beightler (’64), Lindsay (’64), White (°65), Pruzan (’67), Brown (’68), White (’69),
Ercan (*72), Garey (°72), Woo (°72), Hurst (°73), Dietrich ("74), Eppen (*74),
Ercan (*74), Trippi ("74), Enrick (°75), Trippi ('75), Yum (’81), Ballou (’82),
Garcia-Diaz (’84), Hsu (’84),Peters (’84), Gunter (°85), Chakravarty (’87), Lee (’87),
Peters (’87), Yum (’87), Tayi (’88), Barad (’90), Foster (°90), Kang (’90), Raz (’91),
Tang (°91), Villalobos (’91), Villalobos (*93), Jewkes (°95), Rebello (°95), Shin (°95),
Deliman (’96), Gurnani (°96), Viswandham (’96), Chevalier ("97), Rabinowitz (’97),
Chen (°98), Lee (’98), Yao (’99a), Yao (‘99b), Veatch (°00), Zheng (°00),
Emmons (°02), Shiau (’02), Shiau (’03a), Shiau (’03b), Kakade (’04)

Britney (°72), Ballou (’85)

Beightler (°64), Pruzan (°67), White (°69), Garey (*72), Dietrich (°74), Enrick (’75),
Peters (’84), Ballou (°85), Chakravarty (’87), Lee ('87), Barad (°90), Kang (°90),
Raz (’91), Tang (’91), Rebello (°95), Deliman (°96), Viswandham (°96), Lee (°98),
Chen (’99), Veatch (’00), Emmons (’02), Shiau (’02)

Chakravarty (87), Lee (’87), Tayi (’88), Tang (’91), Jewkes (°95)

Lee (’87), Peters (’87), Veatch (’00)

Beightler (’64), Lindsay (’64), White (’65), Pruzan (’67), Brown (’68), White (’69),
Britney (°72), Ercan (°72), Garey (*72), Dietrich (°74), Eppen (°74), Ercan (’74),
Trippi (°74), Enrick (°75), Trippi (75), Yum (’81), Garcia-Diaz (’84), Hsu (’84),
Peters ('84), Chakravarty (’87), Yum (’87), Tayi (’88), Barad (°90), Foster (°90),
Kang (°90), Tang (°91), Villalobos (*91), Villalobos (’93), Jewkes (°95), Shin (°95),
Deliman (°96), Viswandham (°96), Chevalier (’97), Chen (°98), Lee (’98), Chen (°99),
Yao (°99a), Yao (99b), Zheng ('00), Emmons (’02), Shiau (’02), Shiau (’03a),

Shiau (’03b)

( Continued on next page)
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Table 2. Classification of the literature according to modeling characterization ( Continued)

Modeling Classification

Publications

E (cost/output units) Gunter (’85), Lee (°87), Raz (°91), Veatch ("00)

E (cost/conforming
output units)

Throughput or
capacity

AOQL

Valenzuela (°04)

3. Additional
constraints
Inspection time
Number of
inspection stations
Budget limit
Number of repeated
measurements
Throughput or
capacity
Dynamic
programming

Viswandham (’96)

4. Optimization
method

Woo (°72), Ballou (’82), Ballou (’85), Peters (’87), Rebello (°95), Kakade (°04),
Gurnani (°96), Narahari (’96), Rabinowitz (’97)
Lindsay (’64), Brown (’68), Ercan (*74), Foster (°90), Viswandham (’96)

Foster (’90), Villalobos (’93), Lee (*98)
White (°69), Trippi ('74), Viswandham (°96), Shiau (°02), Shiau (’03a), Shiau (’03b)

Tang (°91), Rebello (°95)

Yum (’87), Shin (’95), Gurnani (°96), Yao (99a), Valenzuela (’04)

Beightler (°64), Lindsay (°64), White (°65), Pruzan (°67), Brown (°68), White (’69),
Garey (’72), Woo (°72), Eppen (*74), Enrick (°75), Garcia-Diaz (’84), Hsu (’84),

Gunter (°85), Chakravarty (°87), Peters (’87), Tang (°91), Villalobos (°91),
Villalobos (’93), Gurnani (°96), Chen (’98), Yao (°99a), Yao (’99b), Zheng (°00)

Integer programming

Britney (°72), Ercan (°74), Trippi (°75), Yum (’81), Yum (’87), Raz (’91),

Ercan (°72), Trippi (*74), Ballou (’82), Peters (’84), Ballou (’85), Chakravarty (’87),
Lee (°87), Tayi (°88), Jewkes (’95), Deliman (°96), Narahari (’96), Chevalier (*97),

Dietrich (°74), Barad (°90), Foster (’90), Rebello (°95), Viswandham (’96) (using SA and

GA), Chen (°99) (using SA), Veatch (°00), Emmons (’02), Shiau (’02), Shiau (’03a),
Shiau (°03b), Kakade (°04), Valenzuela ('04)

Rabinowitz (°97)
Nonlinear
programming
Lee (°98)
Heuristics
Simulation Shin (°95)
Expert system Kang (°90)

Using the above modeling characterizations, we classify
the existing literature into different categories in Table 2.
Similar to Section 2.2, in order to know how a publication
models its problem, say, what types of cost components
have been considered, one needs to pool the information
under different categories.

In Table 2, some categories, for example, the cost com-
ponents, are not mutually exclusive. Some papers consider
all cost components, whereas others consider only a sub-
set. If a paper does not appear under a specific category,
it means that the particular cost is not considered by the
paper. The categories of linear and nonlinear variable in-
spection costs are largely exclusive. So are the categories
of the objective functions and the optimization methods.
The union of linear and nonlinear variable inspection costs
covers all the papers with the two exceptions of Narahari
and Khan (1996), who assumed the inspection cost to be
negligible so that it does not appear in either one of the cat-
egories, and Chen and Thornton (1999) who only consid-
ered a fixed inspection cost and no variable inspection cost.
Hurst (1973) is the only paper not included in either one
of the categories under Objective functions and Optimiza-
tion methods because it simply presented a modeling process

without any detailed optimization formulation or a solution
procedure.

2.4. More classifications and discussions

We have previously classified the inspection strategy into
parametric strategies and allocation strategies. When inves-
tigating an allocation strategy, Chevalier and Wein (1997)
also explicitly studied what specification limits, similar to
those used in Statistical Process Control (SPC), should be
used in their inspection process to determine whether or
not an item or a feature is defective. They labeled this de-
cision as a testing policy. This treatment is different from
the majority of the surveyed papers, where the authors have
assumed either a perfect inspection or an imperfect inspec-
tion with a known probability for type-I and type-II errors.
Apparently, most authors are indifferent to a testing pol-
icy once given the inspection’s capability (characterized by
the type-I and type-II error probabilities). When a partic-
ular set of inspection limits needs to be decided additional
complexity indeed comes into play, e.g., the type-I and
type-Ilinspection errors will depend on these specifications.
Therefore, we further divide the allocation strategy into two
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Table 3. Classification of the literature according to the strategy type

Parametric strategy (9)

Allocation strategy without testing policy (43)

Allocation strategy
with testing policy (6)

Ercan (°72), Ercan (°74),
Enrick (°75), Lee (°87),
Jewkes (’95), Chen (°98),
Yao (’99a), Yao ("99b),
Zheng (°00)

Beightler (’64), Lindsay (*64), White (°65), Pruzan (’67),
Brown (’68), White (°69), Britney (*72), Garey (*72),
Woo (°72), Hurst (°73), Dietrich (°74), Eppen (*74),
Trippi ('74), Trippi (75), Yum (’81), Ballou (’82),
Garcia-Diaz (’84), Hsu (’84), Peters (°84), Ballou (°85),

Chevalier (°97), Chen (°99),
Shiau (°02), Shiau (’03a),
Shiau (’03b), Valenzuela (°04)

Gunter (’85), Chakravarty (°87), Peters (’87),
Yum (’87), Tayi (’88), Barad (°90), Foster (°90),
Kang (°90), Raz (°91), Tang (°91), Villalobos (*91),
Villalobos (°93), Rebello (°95), Shin (°95),
Deliman (°96), Gurnani (’96), Narahari (°96),
Viswandham (°96), Rabinowitz ('97), Lee (°98),
Veatch (°00), Emmons (’02), Kakade (°04)

subcategories: allocation strategies that either do or do not
consider the testing policy. Theoretically, the testing policy
can also be considered together with a parametric strat-
egy. However, no such incidence was found during our
survey.

We are interested in knowing how intensely the different
strategies have been studied. Table 3 classifies the literature
into each category, where the number in parenthesis in the
column header indicates the total number of publications
in that category. Clearly, allocation strategies that do not
consider the testing policy have been the focus in past in-
vestigations. The testing policy was only considered as a
part of an inspection strategy in very recent publications,
all the relevant papers being published after 1997.

We are also interested in knowing how the number of
publications has changed over the past four decades af-
ter Lindsay and Bishop first published their seminal pa-
per in 1964. The change is shown using a bar chart in
Fig. 3. Figure 3 demonstrates that interest in the area

25 4

20

15
15 4

10

Number of publications

of inspection-oriented quality-assurance strategy has re-
mained relatively constant over the four-decade period at
a healthy level of roughly one and a half papers per year.
Interestingly, the decade between 1975 and 1984 is the low
point and then publications in this area bounce back quite
strongly. The most recent decade actually has the strongest
publication record, we believe, in part thanks to the wide
implementation of in-line quality inspection facilities in var-
ious manufacturing environments.

3. Diagnosis-oriented sensor-distribution strategy

The primary goal of inspection strategy models is to find
the optimal utilization of inspection resources to identify
defective parts. That is, the costs to identify and process
a defective part are minimized. These models provide so-
lutions to improve the product quality by weeding out po-
tentially defective products before they reach the customers

22

14

1964-1974 1975-1984

1985-1994 1995-2004

Time period

Fig. 3. The number of publications on a decade-by-decade basis.
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rather than fixing the problem that caused the defect. Fol-
lowing the philosophy behind inspection strategies, if the
warranty cost increases drastically, the cost balance will be
attained towards a near-zero defect level of product qual-
ity. Simply weeding out defective products is not a desirable
solution for such a near-zero defect level, since the result-
ing cost will be too high for any manufacturer to remain
competitive in the market place. A strategy to identify and
subsequently eliminate major variation sources has to be
implemented under the near-zero-defect requirement. This
is indeed what has been happening in the past few years;
a poor product quality results in extensive warranty costs
and the associated negative publicity also tends to hit the
company’s revenues. Manufacturers are, thus, under great
pressure to implement techniques for variation-source di-
agnosis, mainly through deploying sensors in their produc-
tion process. This naturally leads to the development of
diagnosis-oriented sensor-distribution strategies.

3.1. Problem statement

In a manufacturing process, sensor distribution involves the
determination of: (i) the workstations at which to place the
sensing devices; (ii) the number of sensors required at indi-
vidual stations; (iii) the location of sensors within individual
stations.

In the literature, the “location of a sensor” takes two dif-
ferent meanings: the first is the literal meaning of a sensor
location, i.e., where a sensor is physically installed; and the
second refers to the location of a product feature that a
sensor measures. Obviously, the solution of a sensor dis-
tribution problem will take quite different routes given the
different meanings of the “location of a sensor”.

The first meaning, i.e., where to physically install a sensor,
is commonly used in computer vision research, where the
principal focus is to quantify and understand the relation-
ship between the objects that are viewed and the sensors that
observe them (Cowan and Kovesi, 1988; Menq et al., 1992;
Tarabanis et al., 1995; Sheng et al., 2003). More specifically,
this type of sensor planning problem can be summarized as:
“given information about the environment (e.g., the object un-
der observation, the available sensors) as well as information
about the task that the vision system is to accomplish (i.e.,
detection of certain object features, object recognition, scene
reconstruction, object manipulation), develop strategies to
automatically determine sensor locations that achieve this
task with certain degree of satisfaction” (Tarabanis et al.,
1995). In the computer vision approaches, the set of prod-
uct quality features to be measured is usually assumed to
be known.

The second meaning of sensor location, i.e., which prod-
uct feature to measure, is more commonly used in quality
control research. Under this meaning, distributing sensors
is, in fact, equivalent to selecting product features to mea-
sure on different stations in a manufacturing process. The
reason is obvious: in order to track down the underlying
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root causes, it is crucial to select a set of product features,
the measurement of which can lead, in some optimal sense,
to an inference about the causes of the variations. In con-
trast, the computer vision approaches, that are based on the
first meaning, do not go all the way to the inference-making
stage which allows us to ultimately diagnose the variation
sources.

The computer vision approaches were apparently the first
to be considered. For this reason, when taking the second
meaning, people tend to assume the availability of a com-
puter vision method that can decide the location where the
sensors are physically installed. The relevant publications
on computer-vision-based sensor planning have been nicely
summarized in the survey by Tarabanis et al. (1995); for
more recent publications after 1995, please refer to Sheng
et al. (2003). In this survey, our principal focus is on re-
search that has taken the second meaning, which decides the
distribution of sensors that are taken in an abstract sense.
Please note that a set of publications targeting geometric
tolerance verification for complicated surfaces (e.g. Menq
et al. (1992)) also bears a certain similarity to the surveyed
approach. However, the research objective for tolerance ver-
ification is different from that of root-cause diagnosis and
their approaches are typically based on statistical sampling
theory (Cochran, 1977); please refer to Dowling et al. (1997)
for a review on the feature or measurement point selection
approaches used in tolerance verification. We have choosen
not to include publications from the tolerance verification
research in this survey.

Similar to how we classified the inspection strategy in
Section 2, we will discuss system characteristics and mod-
eling characteristics in Sections 3.2 and 3.3, respectively.
Somewhat different from the studies in Section 2, in a
sensor-distribution study, sensors are generally treated as
in-process automated devices, which can operate continu-
ously at a comparatively low incremental cost. Moreover,
the resulting sensor distribution is almost always deter-
mined before a production process is built.

3.2. System characteristics

The physical system, including both manufacturing and
measurement operations, is characterized through three as-
pects: (i) process configuration; (ii) the sensor system ho-
mogeneity; and (iii) variation sources.

3.2.1. Process configuration

If using the classification from Fig. 2(a—c), the process con-
figuration considered in the sensor-distribution strategy is
no more complex than a serial system. Still, three distinc-
tions are made: (i) single station: there is only one man-
ufacturing station; (ii) end-of-the-line sensing: the sensing
station is limited to be at the end of the production line but
the variation sources include those from upstream stations;
and (iii) distributed sensing: multiple workstations consti-
tute a serial production system and the sensing stations
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could be located in multiple pre-selected places in the pro-
duction line.

3.2.2. Sensor system homogeneity

A sensor capability is typically characterized through the
bias and uncertainty of its measurements. Since all the sen-
sors are calibrated before service, it is commonly assumed
that a sensor should be able to provide an unbiased mea-
surement, i.e., the sensor noise ¢ ~ N(0, %), where o2 is
the variance. When multiple sensors are deployed, a sensor
system can be generally distinguished, being either a homo-
geneous or a heterogeneous sensor system. A homogeneous
sensor system assumes that all the sensors are identical.
Their sensor noises are independent and are of equal vari-
ance, i.e., ¢ ~ N(0, o> I), where ¢ is the vector of noises from
all the sensors and I is an identity matrix. Of course, no ac-
tual sensor system is absolutely homogenous since no two
sensors are identical. However, a sensor system using the
same type of sensor units from the same manufacturer and
at the same stage of their service life may reasonably qual-
ify as a homogeneous sensor system. On the other hand, a
heterogeneous sensor system consists of sensors that have
different statistical properties, violating the assumption that
g ~ N(0, o°I). For a sensor system constituted by different
types of sensors, or even the same type of sensor but at
different stages of their service lives, using a heterogeneous
sensor model would be more reasonable.

3.2.3. Variation sources

First, we denote by u the process variables representing the
variation sources. Because u is usually not directly measur-
able, an inference regarding u will be made based on sensor
measurements. In the SPC literature, a special case is often
modeled using the first two moments of a random process,
i.e.,, a mean shift, a variance change, or a combination of
both. Following the same spirit, the variation sources are
the mean and variance components associated with u. If u is
an autocorrelated process, certain dynamic patterns could
be important in understanding why the process has gone
wrong. For this reason, some publications also use the es-
timation of u itself, denoted by u, as the variation-source
variable.

Apparently, the system characteristics studied in sensor-
distribution research are quite different from those in the
inspection-strategy study. The sensor-distribution research

Table 4. Difference of system characteristics in the two studies

Mandroli et al.

seemingly studies a simpler process configuration than does
the inspection strategy. However, in a general sense, the
sensor-distribution strategy gets closer to the real physics
and the actual measurements of a manufacturing processes.
For instance, the quality measure is no longer dichoto-
mous. Rather it involves estimations and statistical infer-
ences based on the continuous measurement values. The
sensor system capability is measured by its accuracy and
precision that can be obtained from a gauge in a repeata-
bility and reproducibility study instead of some arbitrar-
ily assigned type-I and type-II errors. For the description
of a defect, a sensor-distribution study associates variation
sources with the statistical properties of process variables
that have more explicitly physical meaning, whereas the de-
fects in the inspection-strategy study are associated with
nothing more specific than an occurrence probability. The
difference in system characteristics in the two studies is sum-
marized in Table 4.

The sensor distribution publications are classified in
Table 5 in terms of system characteristics. Most of the ear-
lier approaches focused on diagnosing faults occurring at
a single station. The single-station model has been mainly
studied in two contexts: (i) sheet metal or autobody assem-
bly; and (i1) workpiece localization. Khan et al. (1998) ex-
tended the sensor-placement problem to an end-of-the-line
sensing. Khan and Ceglarek (2000) also studied the dis-
tributed sensing configuration, which is the focus of most
of the recent studies (Ding et al., 2003; Djurdjanovic and
Ni, 2004).

Fewer studies on heterogeneous sensor systems are found
than those on homogeneous sensor systems. Some papers
do not appear in either category of sensor system homo-
geneity in Table 5 (for example the papers of Weill et al.
(1991) and Hu (1997)) because no explicit characterization
of the sensor noise was attempted. Another set of pure mod-
eling papers (for example that of Jin and Shi (1999)) either
do not specify the sensor noise structure or do not explicitly
utilize the specified sensor noise structure for the purpose of
diagnosis, estimation, or sensor placement. Since the impli-
cation of sensor system homogeneity is vague under those
circumstances, we do not include those modeling papers in
either category.

The papers classified under homogeneous sensor sys-
tem also include those utilizing the ordinary least squares
approach in their diagnosis and estimation efforts (e.g.,

System characteristics

Inspection strategy

Sensor distribution strategy

Product quality Dichotomous
Process configuration
Characterization of inspection
or sensor Type-I and type-II errors
Defect behavior

defect reparability

Serial, assembly, and nonserial
Fraction, repeated, or dynamic inspection

Defect type, occurrence probability, and

Continuous

No more complex than serial

Sensor accuracy and precision

Homogeneous and heterogeneous sensor
system

Mean and variance components,
estimation of process variables
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Table S. Classification of the literature according to system characterization

System characterization

Classification

Publications

1. Production
configuration

2. Sensor system

Single station

End-of-the-line sensing
Distributed sensing

Homogeneous

Weill (°91), Hu (°92), Ceglarek (°96, *99), Apley (°98), Chang (°98),
Khan (°99), Wang (°99), Carlson (’00), Rong (°00, °01), Camelio ("03b,
’04), Liu (°04), Zhu (°04)

Hu (°97), Khan (°98), Mantripragada (°99), Suri (°99), Apley (01, *03),
Ding (’02a), Carlson (’03)

Jin (°99), Khan (’00), Djurdjanovic (01, ’03, °04), Ding (02b, ’03, *04a),
Huang (°02, °04), Camelio (’03a), Zhou (’03a, ’03b), Apley ("04)

Ceglarek (°96), Apley (°98, °01, ’03, °04), Chang (’98), Khan (°98, *99, 00),

homogeneity

Suri (°99), Wang (’99), Carlson (°00, *03), Rong (’00, ’01), Ding (’02b,

03, *04a), Huang (02, *04), Camelio (*03b, *04), Djurdjanovic (03,
*04), Zhou ('03a), Liu (°04), Zhu ('04)

Heterogeneous

3. Variation sources Mean components

Ceglarek (°99), Ding (°02a), Apley ('04)
Jin (°99), Carlson (’00), Djurdjanovic ("01), Huang (02, *04),

Camelio (°03a), Zhou ('03a, *03b), Liu ('04)

Variance components

Hu (92, °97), Ceglarek (°96.99), Apley (98, *01, °03, *04), Khan (*98, *99,

’00), Jin (’99), Suri (’99), Carlson (’00, *03), Rong (’00),
Djurdjanovic (’01, *03, ’04), Ding (’02a, 02b, ’03, *04a), Huang (’02,
’04), Camelio ("03a, ’04), Zhou (’03a, 03b), Liu (04)

1] Weill (°91), Chang (°98), Mantripragada (’99), Wang (°99), Rong (°01),
Camelio (’03b), Zhu (°04)

Wang and Nagarkar (1999) and Camelio et al. (2003b)).
This is because optimal estimation using an ordinary least
squares approach can be performed only under the con-
dition that & ~ (0, 1), according to the Gauss-Markov
Theorem.

A few other papers, although starting with a general co-
variance matrix X for the sensor noise, eventually do away
with the general noise structure by assuming that the noise
covariance matrix is known. Then, after pre-multiplying
the model by X~!/2, the general structured X is trans-
formed into an identity matrix (Apley and Shi, 1998; 2001).
Therefore, those papers that assume a complete knowledge
of the noise (Djurdjanovic and Ni, 2003; Huang and Shi,
2004), are included in the category of homogeneous sensor
systems.

There have been very few attempts to study diagnosability
in a heterogeneous sensor system. Ceglarek and Shi (1999)
assumed a homoscedastic and uncorrelated measurement
noise for the most part of their paper but they did provide a
simulation case study in which their approach was extended
to the heteroscedastic and uncorrelated sensor noise case.
The studies of Ding et al. (2002a) and Apley and Ding
(2004) are applicable to a general structure of the noise
covariance matrix and remain valid for the heteroscedastic
and correlated case.

The majority of the surveyed studies were interested in
estimating variance components, as opposed to mean com-
ponents. In fact, we observed that those papers that did
investigate mean components also studied variance compo-
nents. On the other hand, there exist dedicated approaches
(for example that of Ceglarek and Shi (1996)) to variance
components. This is probably because detecting, identify-

ing, and ultimately, eliminating the root causes of random
process variation is a greater challenge than compensating
a mean shift. Moreover, a sustained, consistent deviation
from nominal values (i.e., a mean shift) can often be com-
pensated relatively easily by process engineers via shimming
and other adjustments. In contrast, variation is much more
difficult to compensate and requires either some form of
on-line feedback control or the removal of the variation
root cause(s).

3.3. Modeling characteristics

There are four issues to be addressed in a sensor-
distribution study: (i) a model that represents the effects
of the variation sources on the sensor data, labeled as a
quality-fault model by Zhou et al. (2003a); (ii) a perfor-
mance measure to benchmark the effectiveness of a sensor
system; (iii) optimization formulations including the ob-
jective function and constraints; and (iv) an optimization
solution approach to solve for the optimal strategy. Com-
pared with the modeling approaches used in the inspection
strategy study, the quality-fault model is a unique compo-
nent in the sensor-distribution study. Component (ii), the
performance measure of a sensor system, is also unique
here because the inspection strategy study usually needs no
further analysis after assuming the type-I and type-II error
probabilities for an inspection action. Components (iii) and
(iv) are common to both studies but the details are different
as will be seen in the following.

3.3.1. Quality-fault model

A linear structured model is often used to link sensor mea-
surements to variation sources because the deviation of
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product/process features is usually much smaller than the
nominal values in quality control application. A lineariza-
tion of nonlinear systems can provide a reasonable repre-
sentation of the quality-fault relationship in discrete-part
manufacturing processes. There are two versions of the
linear-structured model, for the single station and the multi-
ple station process configurations, respectively. For a single
station, a simple linear model can be expressed as:

y(&) = Au(?) +v(t), t=1,2,..., M, 4)
where y(¢) is a vector of n measured product features, u(z) =
[u1(2), ux(2), . .., uy(¢)]” is a random vector whose elements

are associated with p independent variation sources, v(¢)
is an additive sensor noise vector, A =[aj, a,,...,a,] is an
n x p diagnostic matrix relating the variation sources to
the measurement vector, ¢ is an observation index, and M
is the sample size. The quantity a;u;(¢) represents the effects
of the ith variation source on the measurements for part
number ¢ of the sample. Sensor deployment information
(such as the number and positions of sensors) is included
in matrix A.

For a multiple-station process, a recursive station-
indexed state space model is often used to link the vari-
ation sources from individual stations to the sensor mea-
surements. The state space model generally reads as:

Xp = Aro1Xk—1 + Brug +we and  yp = Cexi + vy,
k=1,...,N, (5)

where the subscript k is the index of a station and N de-
notes the total number of stations; x is the process-quality
state variable, and w is the process background disturbance;
Aj_1X;_1 represents the transformation of quality devia-
tion from station k£ — 1 to station k, Buy represents qual-
ity deviations resulting from variation sources at station k,
and {Cy }x=1..n includes the sensor distribution informa-
tion throughout a process (C; = 0 if no measurement is
taken on station j); finally, sample index ¢ could be, but is
not, explicitly included here. This model can be used for
both the end-of-the-line sensing, where the only nonzero C
matrix is Cy, and distributed sensing, where one needs to
decide the optimal set of nonzero C matrices as well as the
sensor distribution within each station.

This station-indexed state space model has been used to
model quality propagation in various multistation man-
ufacturing processes, e.g., the rigid-part assembly process
(Jin and Shi, 1999; Mantripragada and Whitney, 1999), the
compliant-part assembly process (Camelio et al., 2003a),
the machining processes (Djurdjanovic and Ni 20001;
Huang ef al., 2002; Zhou et al. 2003b; Huang and Shi,
2004), and the sheet stretch forming processes (Suri and
Otto, 1999).

3.3.2. Performance measure of a sensor system

The following performance measures have been reported in
the literature for sensors on a single station or those dis-
tributed in a production line: (i) diagnosability; (ii) accu-
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racy or sensitivity; and (iii) the minimum distance between
variation patterns. Diagnosability is a mathematical condi-
tion under which the mean and/or variance components
are uniquely identifiable. This is analogous to the issue of
singularity in a standard least squares approach that results
in nonunique parameter estimates and it typically involves
checking whether a certain matrix (called the diagnosability
matrix) is singular (Ding et al., 2002b; Zhou et al., 2003a).

The estimation uncertainty of mean and variance com-
ponents is used as the accuracy index. The alphabetic opti-
mality criteria such as the D-optimality, the A-optimality,
and the E-optimality, which were originally developed in
research on optimal experimental design (Fedorov, 1972;
Atkinson and Donev, 1992), are often adopted in sensor
distribution studies. They involve the optimization of a
certain measure of the Fisher information matrix M. The
D-optimality maximizes the determinant of M, or equiv-
alently, the product of all eigenvalues associated with M;
the A-optimality maximizes the summation of all eigen-
values of M, and the E-optimality maximizes the smallest
eigenvalue of M. The accuracy index is also known as the
sensitivity index, i.e., how sensitive a sensor system is with
respect to the change of variation sources. Liu et al. (2004)
showed that the sensitivity index is equivalent to the estima-
tion accuracy of variation sources under a normal process
condition.

Some publications have based their variation diagno-
sis algorithms on a pattern matching procedure (includ-
ing those of Ceglarek and Shi (1996); Khan et al. (1998);
Khan et al. (1999); Khan and Ceglarek 2000). The pattern
matching procedure also uses the quality-fault model as
previously outlined but it needs to define a set of patterns
associated with each variation source. From the actual mea-
surement data collected during production, a symptom vec-
tor is extracted, and then, the symptom vector is compared
with the variation patterns. Finally, the variation sources
are identified if a match is found. The performance mea-
sure of such a sensor system is usually based on the dis-
tance among the variation pattern vectors, €.g., maximiz-
ing the minimum pattern distance. The larger the distance
is, the better a sensor system can perform variation diag-
nosis. This performance measure is actually similar to the
E-optimality.

The general concept of all the above performance mea-
sures is equally applicable to mean components, vari-
ance components, and @, however, the corresponding di-
agnosability matrix or Fisher information matrix may be
different.

3.3.3. Optimization formulation

There are generally three types of problems considered in
the literature: (i) for a given number of sensors, find the
optimal sensor locations; (ii) find the minimal number of
sensors as well as the corresponding locations; and (iii)
given the distribution of ¢ sensors, where to distribute the
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additional s sensors? For the first problem, the optimization
formulation will be

F1 Objective function: optimize one of the performance
measures of a sensor system subject to the geometry
and physical constraints for sensor locations, i.e., where
a potential sensor can be located.

In this formulation, since the sensor number is given, cost
components are not directly considered.

The second problem involves a trade-off among costs.
Since an increase in sensor numbers will generally result in
a better system performance (diagnosability or accuracy)
but at the price of a higher sensor cost, people usually try
to reach a cost balance between the benefit gained from a
better system and the cost of more sensors. In a sensor-
distribution study, a variable sensor cost is not usually con-
sidered, since an automated sensor device has a very low
operating cost. The costs associated with quality failure are
purposely left out because of the study’s original intent.
Then the overall cost is the summation of a positive fixed
sensor cost and a negative cost from an increased diagnosis
capability. The optimization formulation in this case is then

F2 Objective function: minimize the total cost subject to
geometry and physical constraints for sensor locations.

Since it is difficult on many occasions to quantify the
monetary saving associated with an improved sensor sys-
tem, people would rather use the performance measure as
a constraint, while minimizing the sensor cost, or equiva-
lently the sensor number, i.e.

F3 Objective function: minimize the sensor cost (or the
sensor number) subject to a requirement on the perfor-
mance measure as well as the geometry and physical
constraints for sensor locations.

The third problem only differs from the first by the fact
that ¢ sensors are already in place and we can only manipu-
late the locations and number of additional sensors. It will
eventually use one of the above three formulations, depend-
ing on whether or not the number of additional sensors is
given.

3.3.4. Optimization solution approach

The formulations F1 to F3 will lead to a constrained non-
linear optimization problem. The optimization methods ex-
plored in the literature include: Powell’s direct search (Wang
and Nagarkar, 1999), sequential quadratic programming or
gradient-based search (Khan et al., 1999), exchange algo-
rithms (Camelio et al., 2003b; Liu et al., 2004), and GAS
(Djurdjanovic and Ni, 2004).

Interestingly, DP, the most popular solution tool in in-
spection strategy studies is rarely used in the sensor distri-
bution literature. We note that the performance measure
of a sensor system, no matter whether it is in the objective
function or in the constraints, is generally impossible to
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decompose into additive components and thus be associ-
ated with individual segments of a multistage process. This
property prevents the optimization problem for sensor dis-
tributions from being formulated as a DP problem. Thus,
DP is not an attractive tool to solve a sensor distribution
problem.

The publications are summarized in Table 6 using the
categories of the modeling characteristics. One may note
that the number of publications appears to be decreasing
from top down in Table 6. This is due to the fact that some
of the papers only studied the quality-fault model without
mentioning the performance measure and optimization,
and some others only considered the performance measure
with no optimization. On the other hand, a publication can
also appear in multiple sub-categories associated with the
same characterization if it addresses multiple issues related
to a sensor-distribution problem. For instance, Wang and
Nagarkar (1999) considered both the problem of finding
the sensor locations for a given number of sensors and the
problem of deciding the sensor location and number simul-
taneously. They proposed a two-level hierarchical approach
when solving the problems. That is why this paper appears
in two sub-categories in both the Optimization formulation
and Solution methods categories.

4. Discussions and thoughts on future research

Based on the discussions in Section 2, we observe that in-
spection strategies have been studied in a rather comprehen-
sive fashion. On the other hand, research on sensor distri-
bution is relatively recent. For instance, strategies explicitly
designed for distributed sensing in a multistation process
are still in their early stages of development. Another ex-
ample is that, although heterogeneous sensor systems have
been modeled and characterized, no systematic approach
towards a distribution strategy for such a heterogeneous
system has yet been reported.

As explained in Section 1, inspection strategies and sen-
sor distribution strategies focus on different aspects of
a practical problem. An inspection strategy is a high-
level operational strategy after simplifying and parame-
terizing system details such as the defect characterization
or the inspection capability. A sensor distribution study
uses physically meaningful variables and parameters but
the insight from its solution do not constitutea high-
level operational strategy in a complicated manufacturing
environment.

Combining the strengths of the two approaches may pro-
duce additional benefits, including that: (i) an integrated
model could be more realistic when certain assumptions
are relaxed; (ii) the data-driven statistical approach in a
sensor-distribution study may provide a means to estimate
the parameters used for the inspection study; and (iii) a
combined strategy should be more capable of handling
decision-making in both detailed and high level operations.
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Table 6. Classification of the literature according to modeling characterization

Modeling

Classification

Publications

Quality-fault
model

Performance
measure

Optimization
formulation

Solution methods

Single station

Multiple station

Diagnosability

A-Optimality

D-Optimality

E-Optimality

Pattern distance

Given number, find location
Find both number and location
Add additional sensors

Direct search

Sequential quadratic

Weill (°91), Hu (°92), Ceglarek (°96, ’99), Apley (°98, 01, *03),

Chang (°98), Khan (°99), Wang (°99), Rong (’00, *01), Camelio ("03b,
’04), Liu ("04), Zhu (°04)

Hu (°97), Khan (°98, °00), Jin (°99), Mantripragada (°99), Suri (°99),
Carlson (°00, ’03), Djurdjanovic (’01, *03, ’04), Ding (’02a, *02b, ’03,
’04a), Huang (°02, °04), Camelio ("03a), Zhou (’03a, *03b),

Apley (°04)

Ding (’02b, ’03), Zhou (’03a), Apley (°04)

Djurdjanovic (03, °04), Zhu (°04)

Wang (°99), Camelio ("03b), Djurdjanovic ("03)

Djurdjanovic (’03), Ding (’04a), Liu (04)

Khan (°98, ’99, °00), Ding (’02a)

Khan (’98, ’99, °00), Wang (’99), Camelio (‘03b), Ding (°03), Zhu (°04)

Wang (°99), Djurdjanovic (°04), Liu ("04)

Ding (’04a)

Wang (°99)

Khan (°98, ’99)

programming or
gradient-based search
Exchange algorithms

Wang (°99), Khan ('00), Camelio ('03b), Ding (03, *04a), Liu ('04),

Zhu ('04)

Genetic algorithms

Djurdjanovic ('04)

Certainly the methodology for the integration is going to
be quite challenging, primarily because the two studies
adopt fundamentally different modeling approaches. Also
there is a dearth of capable methods that can readily solve
a combined problem, which will be a mix of continuous
and discrete variables and will have a relatively large scale.
The following are a few examples of areas in which we
feel that the integration of existing methodologies may be
beneficial.

4.1. Using a continuous quality level

All the inspection strategy studies assume a dichotomous
quality level. However, most of the in-process sensors give
continuous measurements that are contaminated with sen-
sor noises. Simply transforming these data into a binary
output, i.e., defective or nondefective, may result in a loss of
information contained in the original measurements. Defin-
ing a continuous quality level and connecting it with an in-
spection or sensor-distribution policy may better facilitate
quality control efforts and improve the capability of root-
cause diagnosis. In fact, during the study of an allocation
strategy with the testing policy Chevalier and Wein (1997)
used a measurement error model. The measurement error
model is actually a special form of Equation (4) after set-
ting A =1. We consider it to be one of the early efforts in
extending beyond the dichotomous quality level. In future
work, a generic quality-fault model should be used so that
inferences can be made regarding changes in the underlying
process variables.

4.2. Adaptive strategy for sensor distribution

The current sensor-distribution strategies are pre-
determined. In light of the fact that wireless mobile sensors
are becoming more and more realistic, an adaptive strategy
for sensor distribution seems to be required. An adaptive
strategy will decide when a dormant wireless sensor will
be activated or a measurement-taking action should be
taken based on the outcomes of previous inspections or
measurements. Such an adaptive strategy is particularly
meaningful for a wireless sensor network, where the
energy consumption is a major concern and thus sensor
nodes will usually have to work in a low-power regime
unless being actively utilized. Again, in inspection strategy
studies, some adaptive strategies have been investigated
(Dietrich and Sanders, 1974). Recently Priebe et al. (2004)
proposed a framework for adaptive sequential sensing and
processing in classification applications. It is now time
to expand the existing adaptive methodologies to sensor
distribution applications, especially, those in a wireless
network setting.

4.3. A more realistic quality-fault model

Apparently, a linear quality-fault model working only for a
serial production system is not very realistic in actual manu-
facturing settings. Convergent and other nonserial produc-
tion systems have been investigated in inspection strategy
studies. These initial footsteps may be followed to expand
the quality-fault model into sensor distribution studies. An-
other issue is related to the validity of the linear model
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structure used to represent the quality-fault relationship.
In a general discrete-part manufacturing process, although
linearization is a reasonably good approximation for ev-
ery single operation, the nonlinear effect of error propa-
gation could become significant in a process consisting of
a large number of stations and operations. Using a non-
linear model could make the analysis and design highly
complex and thus sometimes a piecewise linear model may
be a good trade-off between having a realistic model and
problem tractability.

We would also like to note that current studies on inspec-
tion and sensor-distribution strategies by and large assume
that the sensor itself will function as it isintended. Although
a sensor noise model is used, either as a type-I and type-II
error model or as a statistical variation model, the critical
issue of what if the sensor deteriorates or even malfunctions
has not been thoroughly studied. The sensor degradation
effect will likely manifest itself in a time-varying fashion,
which perhaps makes a challenging problem even more dif-
ficult. To that end, we believe that robust or fault-tolerant
strategies are much needed to offset any possible adverse
effects caused by sensor anomalies.

Asafinal note, we feel that there are many open areas and
opportunities for future development in the study of sensor-
distribution strategies since it is a relatively new area. We
also note that the most recent development in this area is
the emergence of the distributed wireless sensor network,
which has been identified by MIT’s Technology Review as
one of the top ten emerging technologies that will change
the world (Anon, 2003). This new technology has generated
considerable excitement and is attracting serious attention.
We would like to direct interested readers to Ding et al.
(2004b), which presents a lot more discussion on research
challenges and opportunities related to this new area.

Acknowledgements

The authors gratefully acknowledge financial support from
the NSF under grants DMI1-0217481, DMI-0348150, and
from the State of Texas Advanced Technology Program
under grant 000512-0237-2003. The authors also thank the
editor and the referees for their valuable comments and
suggestions.

References

Anon (2003), 10 emerging technologies that will change the world. Tech-
nology Review, February, 33-49.

Apley, D.W. and Ding, Y. (2004) A characterization of diagnosability
conditions for variance components analysis in assembly operations.
IEEE Transactions on Automation Science and Engineering, 2, 101—
110.

Apley, D.W. and Lee, H.Y. (2003) Identifying spatial variation patterns in
multivariate manufacturing processes: a blind separation approach.
Technometrics, 45, 220-234.

325

Apley, D.W. and Shi, J. (1998) Diagnosis of multiple fixture faults in
panel assembly. Transactions of the ASME, Journal of Manufacturing
Science and Engineering, 120, 793-801.

Apley, D.W. and Shi, J. (2001) A factor-analysis method for diagnosing
variability in multivariate manufacturing processes. Technometrics,
43, 84-95.

Atkinson, A.C. and Donev, A.N. (1992) Optimum Experimental Designs,
Oxford University Press, New York, NY.

Ballou, D.P. and Pazer, H.L. (1982) The impact of inspector fallibility
on the inspection policy in serial production systems. Management
Science, 28, 387-399.

Ballou, D.P. and Pazer, H.L. (1985) Process improvement versus enhanced
inspection in optimized systems. International Journal of Production
Research, 23, 1233-1245.

Barad, M. (1990) A break-even quality level approach to location of
inspection stations in a multi-stage production process. International
Journal of Production Research, 28, 29-45.

Beightler, C.S. and Mitten, L.G. (1964) Design of an optimal sequence
of interrelated sampling plans. Journal of the American Statistical
Association, 59, 96-104.

Britney, R.R. (1972) Optimal screening plans for nonserial production
systems. Management Science, 18, 550-559.

Brown, E.C. (1968) Some mathematical models of inspection along a pro-
duction line. Technical report No. 36, Operations Research Center,
MIT, Cambridge, MA.

Camelio, J. and Hu, S.J. (2004) Multiple fault diagnosis for sheet metal
fixtures using designated component analysis. Transactions of the
ASME, Journal of Manufacturing Science and Engineering, 126, 91—
97.

Camelio, J., Hu, S.J. and Ceglarek, D. (2003a) Modeling variation prop-
agation of multi-station assembly systems with compliant parts.
Transactions of the ASME, Journal of Mechanical Design, 125, 673~
681.

Camelio, J., Hu, S.J. and Yim, H. (2003b) Sensor placement for effec-
tive diagnosis of multiple faults in fixturing of compliant parts,
in Proceedings of the ASME International Mechanical Engineering
Congress, American Society of Mechanical Engineers, New York,
NY, pp. 373-380.

Carlson, J.S., Lindkvist, L. and Séderberg, R. (2000) Multi-fixture assem-
bly system diagnosis based on part and subassembly measurement
data, in Proceedings of 2000 ASME Design Engineering Technical
Conferences, American Society of Mechanical Engineers, New York,
NY, pp. 457-469.

Carlson, J.S. and Soderberg, R. (2003) Assembly root cause analysis:
A way to reduce dimensional variation in assembled products. In-
ternational Journal of Flexible Manufacturing Systems, 15, 113—
150.

Ceglarek, D. and Shi, J. (1996) Fixture failure diagnosis for autobody as-
sembly using pattern recognition. Transactions of the ASME, Journal
of Engineering for Industry, 118, 55-56.

Ceglarek, D. and Shi, J. (1999) Fixture failure diagnosis for sheet metal
assembly with consideration of measurement noise. Transactions of
the ASME, Journal of Manufacturing Science and Engineering, 121,
T71-777.

Chakravarty, A.K. and Shtub, A. (1987) Strategic allocation of inspection
effortin a serial, multi-product production system. I/E Transactions,
19, 13-22.

Chakravarty, K., Sitharama, S., Qi, H. and Cho, E. (2002) Grid coverage
for surveillance and target location in distributed sensor networks.
IEEE Transactions on Computers, 51, 1448-1453.

Chang, M. and Gossard, D.C. (1998) Computational method for diag-
nosis of variation-related assembly problems. International Journal
of Production Research, 36, 2985-2995.

Chen, J., Yao, D.D. and Zheng, S. (1998) Quality control for products
supplied with warranty. Operations Research, 46, 107-115.

Chen, T.J. and Thornton, A.C. (1999) Quantitative selection of inspec-
tion plans. in Proceedings of the 1999 ASME Design Engineering



326

Technical Conferences, American Society of Mechanical Engineers,
New York, NY.

Chevalier, P.B. and Wein, L.W. (1997) Inspection for circuit board assem-
bly, Management Science, 43, 1198-1213.

Cochran, W.G. (1977) Sampling Techniques, 3rd ed., Wiley, New York,
NY.

Cowan, C.K. and Kovesi, P.D. (1988) Automatic sensor placement from
vision task requirements. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10, 407-416.

Deliman, N.C. and Feldman, R.M. (1996) Optimization of process im-
provement and inspection location for serial manufacturing. Inter-
national Journal of Production Research, 34, 395-405.

Dietrich, D.L. and Sanders, J.L. (1974) A Bayesian quality assurance
model for a multi-stage production process, in ASQC Technical Con-
ference Transactions, American Society for Quality Control, Mil-
waukee, WI, pp. 338-348.

Ding, Y. and Apley, D.W. (2004a) Strategies for placing additional sensors
to improve dimensional variation diagnosis in assembly processes.
Working paper, Department of Industrial Engineering, Texas A&M
University, College Station, TX 77843, USA.

Ding, Y., Ceglarek, D. and Shi, J. (2002a) Fault diagnosis of multistage
manufacturing processes by using state space approach. Transac-
tions of the ASME, Journal of Manufacturing Science and Engineer-
ing, 124, 313-322.

Ding, Y., Elsayed, E.A., Kumara, S., Lu, J.C., Niu, F. and Shi, J.
(2004b) Distributed sensing for quality and productivity improve-
ments. IEEE Transactions on Automation Science and Engineering
(accepted).

Ding, Y., Kim, P, Ceglarek, D. and Jin, J. (2003) Optimal sensor dis-
tribution for variation diagnosis in multistation assembly processes.
IEEE Transactions on Robotics and Automation, 19, 543-556.

Ding, Y., Shi, J. and Ceglarek, D. (2002b) Diagnosability analysis of multi-
station manufacturing processes. Transactions of the ASME, Journal
of Manufacturing Science and Engineering, 124, 1-13.

Djurdjanovic, D. and Ni, J. (2001) Linear state space modeling of dimen-
sional machining errors, Transactions of NAMRI/SME, 29, 541—
548.

Djurdjanovic, D. and Ni, J. (2003) Bayesian approach to measurement
scheme analysis in multistation machining systems. Journal of Engi-
neering Manufacture, 217, 1117-1130.

Djurdjanovic, D. and Ni, J. (2004) Measurement scheme synthesis in
multi-station machining systems. Transactions of the ASME, Journal
of Manufacturing Science and Engineering, 126, 178-188.

Dorris, A.L. and Foote, B.L. (1978) Inspection errors and statistical
quality-control-survey. AIIE Transactions, 10, 184-192.

Dowling, M.M., Griffin, P.M., Tsui, K.-L. and Zhou, C. (1997) Statistical
issues in geometric feature inspection using coordinate measuring
machines (with discussions), Technometrics, 39, 3-24.

Emmons, H. and Rabinowitz, G. (2002) Inspection allocation for multi-
stage deteriorating production systems. IIE Transactions, 34, 1031—
1041.

Enrick, N.L. (1975) Towards optimization of inspection allocation Part I
and I1. Industrial Management, 17, 7-11.

Eppen, G.D. and Hurst, E.G. (1974) Optimal location of inspection sta-
tions in a multistage production process. Management Science, 20,
1194-1200.

Ercan, S.S. (1972) Systems approach to the multistage manufacturing
connected-unit situation. Naval Research Logistics Quarterly, 19,
493-500.

Ercan, S.S., Hassan, M.Z. and Taulananda, A. (1974) Cost minimizing
single sampling plans with AIQL and AOQL constraints. Manage-
ment Science, 20, 1112-1121.

Fedorov, V.V. (1972) Theory of Optimal Experiments, Academic Press,
New York, NY.

Foster, JW., Malave, C.O. and Villalobos, JR. (1990) Flexible inspec-
tion within an aggregated information environment. Computers &
Industrial Engineering, 19, 224-228.

Mandroli et al.

Garcia-Diaz, A., Foster, J.W. and Bonyuet, M. (1984) Dynamic program-
ming analysis of special multi-stage inspection systems. I/E Trans-
actions, 16, 115-125.

Garey, M.R. (1972) Optimal test point selection for sequential manufac-
turing processes. The Bell System Technical Journal, 51, 291-300.

Gunter, S.I. and Swanson, L.A. (1985) Inspector location in convergent
production line. International Journal of Production Research, 23,
1153-1169.

Gurnani, H., Drezner, Z. and Akella, R. (1996) Capacity planning un-
der different inspection strategies. European Journal of Operations
Research, 89, 302-312.

Hsu, J.I.S. (1984) A hybrid inspection system for the multistage produc-
tion process. International Journal of Production Research, 22, 63—69.

Hu, S.J. (1997) Stream-of-variation theory for automotive body assembly.
Annals of the CIRP, 46, 1-6.

Hu, S.J. and Wu, S.M. (1992) Identifying sources of variation in automo-
bile body assembly using principal component analysis. Transactions
of NAMRI/SME, 20, 311-316.

Huang, Q. and Shi, J. (2004) Variation transmission analysis and diagno-
sis of multi-operational machining processes. IIE Transactions, 36,
807-815.

Huang, Q., Zhou, S. and Shi, J. (2002) Diagnosis of multi-operational ma-
chining processes through variation propagation analysis. Robotics
and Computer-Integrated Manufacturing, 18, 233-239.

Hurst, E.G. (1973) Imperfect inspection in a multistage production pro-
cess. Management Science, 20, 378-384.

Jewkes, E.M. (1995) Optimal inspection effort and scheduling for a man-
ufacturing process with repair. European Journal of Operational Re-
search, 85, 340-351.

Jin, J. and Shi, J. (1999) State-space modeling of sheet metal assembly for
dimensional control. Transactions of the ASME, Journal of Manu-
facturing Science and Engineering, 121, 756-762.

Kakade V., Valenzuela J.F. and Smith J.S. (2004) An optimization model
for selective inspection in serial manufacturing systems. International
Journal of Production Research, 42, 3891-3909.

Kang, K., Ebeling, K.A., and La, S. (1990) The optimal location of in-
spection stations using a rule-based methodology. Computers & In-
dustrial Engineering, 19, 272-275.

Khan, A. and Ceglarek, D. (2000) Sensor optimization for fault diagnosis
in multi-fixture assembly systems with distributed sensing. Transac-
tions of the ASME, Journal of Manufacturing Science and Engineer-
ing, 122, 215-226.

Khan, A., Ceglarek, D. and Ni, J. (1998) Sensor location optimization
for fault diagnosis in multi-fixture assembly systems. Transactions of
the ASME, Journal of Manufacturing Science and Engineering, 120,
781-792.

Khan, A., Ceglarek, D., Shi, J., Ni, J. and Woo, T.C. (1999) Sensor opti-
mization for fault diagnosis in single fixture systems: a methodology.
Transactions of the ASME, Journal of Manufacturing Science and
Engineering, 121, 109-117.

Kubrusly, C.S. and Malebranche, H. (1985) Sensors and controllers
location in distributed systems — a survey. Automatica, 21, 117-
128.

Lee, H.L. and Rosenblatt, M.J. (1987) Simultaneous determination of
production cycle and inspection schedules in a production system.
Management Science, 33, 1125-1136.

Lee, J. and Unnikrishnan, S. (1998) Planning quality inspection opera-
tions in multistage manufacturing systems with inspection errors.
International Journal of Production Research, 36, 141-155.

Lindsay, G.F. and Bishop, A.B. (1964) Allocation of screening inspection
efforts — A dynamic programming approach. Management Science,
10, 342-352.

Liu, Q., Ding, Y., and Chen, Y. (2005), Optimal coordinate sensor place-
ments for estimating mean and variance components of variation
sources. I1E Transaction, 37, 877-889.

Mantripragada, R. and Whitney, D.E. (1999) Modeling and control-
ling variation propagation in mechanical assemblies using state



Survey of the inspection strategy and sensor distribution literature

transition models. IEEE Transactions on Robotics and Automation,
15, 124-140

Menipaz, E. (1978) A taxonomy of economically based quality control
procedures. International Journal of Production Research, 16, 153—
167.

Mengq, C., Yau, H.T. and Lai, G. (1992) Automated precision measure-
ment of surface profile in CAD-directed inspection. IEEE Transac-
tions on Robotics and Automation, 8, 268-278.

Montgomery, D.C. (2003) Introduction to Statistical Quality Control, Sth
edn., Wiley, New York, NY.

Myers, R.H. and Montgomery, D.C. (1995) Response Surface Methodol-
ogy: Process and Product Optimization Using Designed Experiments,
Wiley, New York, NY.

Narahari, Y. and Khan, L.M. (1996) Modeling reentrant manufacturing
systems with inspection stations. Journal of Manufacturing Systems,
15, 367-378.

Peters, M.H. and Williams, W.W. (1984) Location of quality inspection
stations: an experimental assessment of five normative heuristics.
Decision Sciences, 15, 389-408.

Peters, M.H. and Williams, W.W. (1987) Economic design of quality mon-
itoring efforts for multi-stage production systems. I//E Transactions,
19, 81-87.

Priebe, C.E., Marchette, D.J. and Healy, D.M. (2004) Integrated sensing
and processing decision trees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26, 699-708.

Pruzan, P.M. and Jackson, J.T.R. (1967) A dynamic programming appli-
cation in production line inspection. Technometrics, 9, 73-81.
Rabinowitz, G. and Emmons, H. (1997) Optimal and heuristic inspection
schedules for multistage production systems. I/E Transactions, 29,

1063-1071.

Raz, T. (1986) A survey of models for allocating inspection effort in mul-
tistage production systems. Journal of Quality Technology, 18, 239—
247.

Raz, T. and Kaspi, M. (1991) Location and sequencing of imperfect in-
spection operations in serial multi-stage production systems. Inter-
national Journal of Production Research, 29, 1645-1659.

Rebello, R., Agnetis, A. and Mirchandani, P.B. (1995) Specialized in-

spection problems in serial production systems. European Journal of

Operations Research, 80, 277-296.

Rong, Q., Ceglarek, D. and Shi, J. (2000) Dimensional fault diagno-
sis for compliant beam structure assemblies. Transactions of the
ASME, Journal of Manufacturing Science and Engineering, 122,773~
780.

Rong, Q., Shi, J. and Ceglarek, D. (2001) Adjusted least squares approach
for diagnosis of ill-conditioned compliant assemblies. Transactions
of the ASME, Journal of Manufacturing Science and Engineering,
123, 453-461.

Sheng, W., Xi, N., Song M. and Chen, Y. (2003) CAD-guided sensor
planning for dimensional inspection in automotive manufacturing.
IEEE/ ASME Transactions on Mechatronics, 8, 372-380.

Shiau, Y.R. (2002) Inspection resource assignment in a multistage manu-
facturing system with an inspection error model. International Jour-
nal of Production Research, 40, 1787-1806.

Shiau, Y.R. (2003a) Inspection allocation planning for a multiple quality
characteristic advanced manufacturing system. International Jour-
nal of Advanced Manufacturing Technology, 21, 494-500.

Shiau, Y.R. (2003b) Quick decision-making support for inspection allo-
cation planning with rapidly changing customer requirements. In-
ternational Journal of Advanced Manufacturing Technology, 22, 633—
640.

Shin, W.S., Hart, S.M. and Lee, H.F. (1995) Strategic allocation of in-
spection stations for a flow assembly line: a hybrid procedure. //E
Transactions, 27, 7107-715.

Suri, R. and Otto, K. (1999) Variation modeling for a sheet stretch form-
ing manufacturing system. Annals of CIRP, 48, 397-400.

Tang, C.S. (1991) Designing an optimal production system with inspec-
tion. European Journal of Operations Research, 52, 45-54.

327

Tarabanis, K.A., Allen, PK. and Tsai, R.Y. (1995) A survey of sensor
planning in computer vision. /EEE Transactions on Robotics and
Automation, 11, 86—-104.

Tayi, G.K. and Ballou, D.P. (1988) An integrated production-inventory
model with reprocessing and inspection. International Journal of
Production Research, 26, 1299-1315.

Trippi, R.R. (1974) An on-line computational model for inspection re-
source allocation. Journal of Quality Technology, 6, 167-174.

Trippi, R.R. (1975) The warehouse location formulation as a special type
of inspection problem. Management Science, 21, 986-988.

Valenzuela J.F., Smith J.S. and Evans J.L. (2004) Allocating solder-paste
printing inspection in high volume electronics manufacturing. I/E
Transactions, 36, 1171-1181.

Veatch, M.H. (2000) Inspection strategies for multistage production sys-
tems with time-varying quality. International Journal of Production
Research, 38, 837-853.

Villalobos, J.R. and Foster, JW. (1991) Some results from model of dy-
namic inspection allocation. Computers and Industrial Engineering,
21, 355-358.

Villalobos, J.R., Foster, J.W. and Disney, R.L. (1993) Flexible inspection
systems for serial multi-stage production systems. I/E Transactions,
25, 16-26.

Viswanadham, N., Sharma, S. and Taneja, M. (1996) Inspection alloca-
tion in manufacturing systems using stochastic search techniques.
IEEE Transactions on Systems, Man and Cybernetics, Part A (Sys-
tems & Humans), 26, 222-230.

Wang, Y. and Nagarkar, S. (1999) Locator and sensor placement
for automated coordinate checking fixtures. Transactions of the
ASME, Journal of Manufacturing Science and Engineering, 121, 709—
719.

Weill, R., Dar-El, 1. and Laloum, M. (1991) The influence of fixture
positioning errors on the geometric accuracy of mechanical parts,
in Proceedings of the CIRP Conference on Production Engineering
and Manufacturing Science, Tianjin, China, pp. 215-225.

White, L.S. (1965) The analysis of a single class of multistage inspection
plans. Management Science, 12, 685-693.

White, L.S. (1969) Shortest route models for the allocation of inspec-
tion effort on a production line. Management Science, 15, 249—
259.

Woo, W.K. and Metcalfe, J.E. (1972) Optimal allocation of inspection
effort in multistage manufacturing processes. Western Electric Engi-
neer, 16, 3—-16.

Yao, D.D. and Zheng, S. (1999a) Sequential inspection under capacity
constraints. Operations Research, 47, 410-422.

Yao, D.D. and Zheng, S. (1999b) Coordinated quality control in a two-
stage system. IEEE Transactions on Automatic Control, 44, 1166—
1179.

Yum, B.J. and McDowell, E.D. (1981) The optimal allocation of inspec-
tion effort in a class of nonserial production systems. I/E Transac-
tions, 13, 285-293.

Yum, B.J. and McDowell, E.D. (1987) Optimal inspection policies in
a serial production system including scrap rework and repair: an
MILP approach. International Journal of Production Research, 25,
1451-1464.

Zheng, S. (2000) Dynamic quality control in assembly systems. I1E Trans-
actions, 32, 797-806.

Zhou, S., Ding, Y., Chen, Y. and Shi, J. (2003a) Diagnosability study of
multistage manufacturing processes based on linear mixed-effects
models. Technometrics, 45, 312-325.

Zhou, S., Huang, Q. and Shi, J. (2003b) State space modeling for dimen-
sional monitoring of multistage machining process using differential
motion vector. I[EEE Transactions on Robotics and Automation, 19,
296-308.

Zhu, L., Luo, H. and Ding, H. (2004) Accuracy characterization
and measurement point planning for workpiece localization.
Working paper, Robotics Institute, Shanghai Jiaotong University,
China.



328
Biographies

Mr. Sampatraj S. Mandroli received his B.E. (Hons.) in Mechanical En-
gineering from the National Institute of Technology, Rourkela, India in
1998 and an M.S. in Industrial Engineering from Texas A&M Univer-
sity, College Station, TX in 2004. He is currently working as a production
planner at Solectron, Austin, TX. His research interests are in the area of
quality engineering, facilities design, and also production and operations
analysis. He is a member of ASQ and APICS.

Mr. Abhishek K. Shrivastava received his B.Tech. (Hons.) in Industrial
Engineering from the Indian Institute of Technology, Kharagpur, India
in 2003. He is currently a graduate student in the Department of Indus-
trial Engineering at Texas A&M University, College Station, TX. His
research interests are in the area of quality engineering, applied statistics
and optimization, including optimal sensor network design, simulation
modeling, simulation-based optimization and design of experiments. He
is a student member of the IIE and INFORMS.

Mandroli et al.

Dr. Yu Ding received a B.S degree in Precision Engineering from the Uni-
versity of Science and Technology of China in 1993, an M.S. in Precision
Instruments from Tsinghua University, China in 1996, an M.S. in Me-
chanical Engineering from the Pennsylvania State University in 1998, and
a Ph.D. in Mechanical Engineering from the University of Michigan in
2001. He is currently an Assistant Professor in the Department of Indus-
trial Engineering at Texas A&M University. His research interests are in
the area of quality engineering and applied statistics, including in-process
variation diagnosis, diagnosability analysis of distributed sensor systems,
optimal sensor system design, and process-oriented robust design and
tolerancing. His current research is sponsored by the National Science
Foundation, Nokia, and the State of Texas Higher Education Coordinat-
ing Board. He has received a number of awards for his work, including a
CAREER Award from the National Science Foundation in 2004 and the
Best Paper Award from the ASME Manufacturing Engineering Division
in 2000. He currently serves as a department editor for I/E Transactions.
He is a member of IIE, ASME, SME, and INFORMS.

Contributed by the Process Control Department



